Megafusiones de galaxias antiguas.

Fusiones de galaxias en el universo temprano.
Esta ilustración muestra a un grupo de galaxias fusionándose y en interacción en el Universo temprano. Estas fusiones se han visto usando los telescopios ALMA y APEX y representan la formación de cúmulos de galaxias, los objetos más masivos del Universo moderno. Los astrónomos creían que estos eventos tuvieron lugar unos 3.000 millones de años después del Big Bang, por lo que se sorprendieron cuando las nuevas observaciones revelaron que esto sucedió cuando el Universo tenía tan sólo la mitad de esa edad. Crédito: ESO/M. KornmesserCredit: ESO/M. Kornmesser

Los telescopios ALMA y APEX han buceado en las profundidades del espacio, hacia la época en la que el Universo tenía una décima parte de su edad actual, y han sido testigos de los inicios de una gigantesca aglomeración cósmica: la inminente colisión de jóvenes galaxias con estallido de formación estelar. Los astrónomos creían que estos eventos tuvieron lugar unos 3.000 millones de años después del Big Bang, por lo que se sorprendieron cuando las nuevas observaciones revelaron que esto sucedió cuando el Universo tenía tan sólo la mitad de esa edad. Se cree que estos antiguos sistemas de galaxias acaban formando las estructuras más masivas del Universo: los cúmulos de galaxias.

Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA) y el Atacama Pathfinder Experiment (APEX), dos equipos internacionales de científicos, liderados por Tim Miller (de la Universidad de Dalhousie de Canadá y la Universidad de Yale en los Estados Unidos) y por Iván Oteo (de la Universidad de Edimburgo, Reino Unido) han descubierto concentraciones de galaxias sorprendentemente densas que están a punto de fusionarse, formando los núcleos de lo que finalmente se convertirá en colosales cúmulos de galaxias.

Estudiando el 90% de todo el Universo visible, el equipo de Miller observó un protocúmulo de galaxias llamado SPT2349-56. La luz de este objeto comenzó a viajar hacia nosotros cuando el Universo tenía alrededor de una décima parte de su edad actual.

Las galaxias individuales de esta densa acumulación cósmica son galaxias con brotes de formación estelar (conocidas en inglés como galaxias starburst) y la concentración de esta vigorosa formación estelar en una región tan compacta la convierte en la zona más activa jamás observada en el Universo joven. Allí nacen cada año miles de estrellas, mientras que, en comparación, en nuestra Vía Láctea nace tan solo una estrella al año.

Este montaje muestra tres vistas de un grupo distante de galaxias en interacción y en proceso de fusión en el Universo temprano. La imagen de la izquierda es una visión de amplio campo del Telescopio del Polo Sur que revela sólo un punto brillante. La imagen central es de APEX y revela más detalles. La imagen de la derecha es de ALMA y revela que el objeto es, en realidad, un grupo de 14 galaxias fusionándose en el proceso de formación de un cúmulo de galaxias. Crédito: ESO/ALMA ESO/NAOJ/NRAO)/Miller et al.

Combinando observaciones de ALMA y APEX, el equipo de Oteo ya había descubierto una megafusión similar formada por diez galaxias polvorientas con formación estelar, apodadas un “núcleo rojo polvoriento” debido a su intenso color rojo.

Iván Oteo explica por qué estos objetos son inesperados: “Se cree que la duración de los brotes de formación estelar polvorientos es relativamente corta, ya que consumen el gas a un ritmo extraordinario. En cualquier momento, en cualquier rincón del Universo, estas galaxias suelen ser minoría. Por lo tanto, encontrar numerosos brotes de formación estelar polvorientos brillando al mismo tiempo de ese modo es muy desconcertante, y algo que todavía necesitamos comprender”.

Antena del APEX, crédito: ESO.

Estos cúmulos de galaxias en formación se detectaron primero como débiles manchas de luz usando el Telescopio del Polo Sur y el Observatorio Espacial Herschel. Posteriores observaciones de ALMA y APEX demostraron que tenían una estructura inusual y confirmaron que su luz se originó mucho antes de lo esperado, sólo 1.500 millones de años después del Big Bang.

Finalmente, las nuevas observaciones de alta resolución de ALMA, revelaron que las dos manchas de brillo tenue no eran objetos individuales, sino que estaban compuestas por catorce y diez galaxias masivas individuales respectivamente, cada una dentro de un radio comparable a la distancia entre la Vía Láctea y las vecinas Nubes de Magallanes.

“Estos descubrimientos realizados con ALMA son sólo la punta del iceberg. Más observaciones llevadas a cabo con APEX muestran que el número real de galaxias con formación estelar probablemente es tres veces mayor. Otras observaciones en curso realizadas con el instrumento MUSE, instalado en el VLT de ESO, también están identificando más galaxias”, comenta Carlos De Breuck, astrónomo de ESO.

Los modelos teóricos y computacionales actuales sugieren que este tipo de protocúmulos tan masivos habrían necesitado mucho más tiempo para evolucionar. Utilizando datos de ALMA, con su resolución y sensibilidad superior, incorporados a sofisticadas simulaciones computacionales, los investigadores son capaces de estudiar la formación de cúmulos menos de 1.500 millones de años después del Big Bang.

“Aún no sabemos cómo este conjunto de galaxias creció tanto y tan rápido. No se formó de manera gradual a lo largo de miles de millones de años, como podrían suponer los astrónomos. Este descubrimiento ofrece una gran oportunidad para estudiar cómo se unieron galaxias masivas para formar enormes cúmulos de galaxias”, afirma Tim Miller, doctorando en la Universidad de Yale y autor principal de uno de los artículos.

Antenas del ALMA, crédito: ESO.

Información adicional.
Este trabajo de investigación se ha presentado en dos artículos científicos, “The Formation of a Massive Galaxy Cluster Core at z = 4.3”, por T. Miller et al., que aparece en la revista Nature, y “An Extreme Proto-cluster of Luminous Dusty Starbursts in the Early Universe”, por I. Oteo et al., que aparece en la revista Astrophysical Journal.

El equipo de Miller está formado por: T. B. Miller (Universidad de Dalhousie, Halifax, Canadá; Universidad de Yale, New Haven, Connecticut, EE.UU.); S. C. Chapman (Universidad de Dalhousie, Halifax, Canadá; Instituto de Astronomía, Cambridge, Reino Unido); M. Aravena (Universidad Diego Portales, Santiago, Chile); M. L. N. Ashby (Centro de Astrofísica Harvard-Smithsonian, Cambridge, Massachusetts, EE.UU.); C. C. Hayward (Centro de Astrofísica Harvard-Smithsonian, Cambridge, Massachusetts, EE.UU.; Center de Astrofísica  Computacional, Instituto Flatiron, Nueva York, Nueva York, EE.UU.); J. D. Vieira (Universidad  de Illinois, Urbana, Illinois, EE.UU.); A. Weiß (Instituto Max-Planck de Radioastronomía, Bonn, Alemania); A. Babul (Universidad  de Victoria, Victoria, Canadá); M. Béthermin (Universidad Aix-Marseille, CNRS, LAM, Laboratorio de Astrofísica de Marsella, Marsella, Francia); C. M. Bradford (Instituto de Tecnología de California, Pasadena, California, EE.UU.; Laboratorio de Propulsión a Chorro (JPL), Pasadena, California, EE.UU.); M. Brodwin (Universidad  de Missouri, Kansas City, Missouri, EE.UU.); J. E. Carlstrom (Universidad  de Chicago, Chicago, Illinois, EE.UU.); Chian-Chou Chen (ESO, Garching, Alemania); D. J. M. Cunningham (Universidad de Dalhousie, Halifax, Canadá; Universidad de Santa María, Halifax, Nueva Escocia, Canadá); C. De Breuck (ESO, Garching, Alemania); A. H. Gonzalez (Universidad de Florida, Gainesville, Florida, EE.UU.); T. R. Greve (University College de Londres, Gower Street, Londres, Reino Unido); Y. Hezaveh (Universidad de Stanford, Stanford, California, EE.UU.); K. Lacaille (Universidad de Dalhousie, Halifax, Canadá; Universidad McMaster, Hamilton, Canadá); K. C. Litke (Observatorio Steward, Universidad de Arizona, Tucson, Arizona, EE.UU.); J. Ma (Universidad de Florida, Gainesville, Florida, EE.UU.); M. Malkan (Universidad de California, Los Ángeles, California, EE.UU.); D. P. Marrone (Observatorio Steward, Universidad de Arizona, Tucson, Arizona, EE.UU.); W. Morningstar (Universidad de Stanford, Stanford, California, EE.UU.); E. J. Murphy (Observatorio Nacional de Radioastronomía, Charlottesville, Virginia, EE.UU.); D. Narayanan (Universidad de Florida, Gainesville, Florida, EE.UU.); E. Pass (Universidad de Dalhousie, Halifax, Canadá, Universidad de Waterloo, Waterloo, Canadá); R. Perry (Universidad de Dalhousie, Halifax, Canadá); K. A. Phadke (Universidad de Illinois, Urbana, Illinois, EE.UU.); K. M. Rotermund (Universidad de Dalhousie, Halifax, Canadá); J. Simpson (Universidad de Edimburgo, Real Observatorio, Blackford Hill, Edimburgo; Universidad de Durham, Durham, Reino Unido); J. S. Spilker (Observatorio Steward, Universidad de Arizona, Tucson, Arizona, EE.UU.); J. Sreevani (Universidad de Illinois, Urbana, Illinois, EE.UU.); A. A. Stark (Centro de Astrofísica Harvard-Smithsonian, Cambridge, Massachusetts, EE.UU.); M. L. Strandet (Instituto Max-Planck de Radioastronomía, Bonn, Alemania); y A. L. Strom (Observatorios de las Instituciones Carnegie para la Ciencia, Pasadena, California, EE.UU.).

El equipo de Oteo está formado por: I. Oteo (Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido; ESO, Garching, Alemania); R. J. Ivison (ESO, Garching, Alemania; Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido); L. Dunne (Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido; Universidad de Cardiff, Cardiff, Reino Unido); A. Manilla-Robles (ESO, Garching, Alemania; Universidad de Canterbury, Christchurch, Nueva Zelanda); S. Maddox (Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido; Universidad de Cardiff, Cardiff, Reino Unido); A. J. R. Lewis (Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido); G. de Zotti (INAF-Observatorio Astronómico de Padua, Padua, Italia); M. Bremer (Universidad de Bristol, Tyndall Avenue, Bristol, Reino Unido); D. L. Clements (Imperial College, Londres, Reino Unido); A. Cooray (Universidad de California, Irvine, California, EE.UU.); H. Dannerbauer (Instituto de Astrofísica de Canarias, La Laguna, Tenerife, España; Universidad de La Laguna, Dpto. Astrofísica, La Laguna, Tenerife, España); S. Eales (Universidad de Cardiff, Cardiff, Reino Unido); J. Greenslade (Imperial College, Londres, Reino Unido); A. Omont (CNRS, Instituto de Astrofísica de París, París, Francia; UPMC Univ. París 06, París, Francia); I. Perez–Fournón (Universidad de California, Irvine, California, EE.UU.; Instituto de Astrofísica de Canarias, La Laguna, Tenerife, España); D. Riechers (Universidad de Cornell, Edificio de Ciencias Espaciales, Ithaca, Nueva York, EE.UU.); D. Scott (Universidad de British Columbia, Vancouver, Canadá); P. van der Werf (Observatorio de Leiden, Universidad de Leiden, Leiden, Países Bajos); A. Weiß (Instituto Max-Planck de Radioastronomía, Bonn, Alemania) y Z-Y. Zhang (Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido; ESO, Garching, Alemania).

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Ministerio de Ciencia y Tecnología de Taiwán (MOST), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).

La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.

CONTACTOS.
Valeria Foncea
Directora de Comunicaciones y Educación
Observatorio ALMA, Santiago, Chile
Teléfono fijo: +56 2 2467 6258
Teléfono móvil: +56 9 7587 1963
Correo electrónico: valeria.foncea@alma.cl

Richard Hook.
Encargado de Prensa, Observatorio Europeo Austral
Garching, Alemania
Teléfono fijo: +49 89 3200 6655
Teléfono móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org

Charles E. Blue.
Encargado de Comunicaciones
Observatorio Nacional de Radioastronomía, Charlottesville VA - EE.UU.
Teléfono fijo: +1 434 296 0314
Teléfono móvil: +1 202 236 6324
Correo electrónico: cblue@nrao.edu

Masaaki Hiramatsu.
Encargado de Educación y Extensión, NAOJ Chile
Observatorio de Tokio, Japón
Teléfono fijo: +81 422 34 3630
Correo electrónico: hiramatsu.masaaki@nao.ac.jp

• Publicado en ALMA el 25 de abril del 2.018.

Lo más visto de los últimos 30 días.

ALMA detecta rastros de oxígeno más distantes del Universo.

Un cuásar en el centro de un cúmulo de galaxias.

Los rayos láser de una hormiga cósmica.

Investigadores de la UPC y del IAC descubren una de las estrellas de neutrones más masivas.

Cúmulos de galaxias revelan información sobre la materia oscura.

La innovación avanza el sistema de obtención de imágenes 'alimentación de matriz por fases'.

El disco de la Vía Láctea es mayor de lo que se pensaba.

Nuestro Universo Local en ultravioleta.

Descubierto un asteroide exiliado en la periferia del Sistema Solar.